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[1] We present a systematic attempt to fit the Viking lander surface pressure cycle using a
Mars General Circulation Model, MarsWRF. Following the earlier study by Wood and
Paige (1992) using a one-dimensional model, high-precision fitting was achieved by
tuning five time-independent parameters: the albedo and emissivity of the seasonal caps
of the two hemispheres and the total CO2 inventory in the atmosphere frost system. We
used a linear iterative method to derive the best fit parameters: albedo of the northern
cap = 0.795, emissivity of the northern cap = 0.485, albedo of the southern cap = 0.461,
emissivity of the southern cap = 0.785, and total CO2 mass = 2.83 � 1016 kg. If these
parameters are used in MarsWRF, the smoothed surface pressure residual at the VL1 site is
always smaller than several Pascal through a year. As in other similar studies, the best fit
parameters do not match well with the current estimation of the seasonal cap radiative
properties, suggesting that important physics contributing to the energy balance not
explicitly included in MarsWRF have been effectively aliased into the derived parameters.
One such effect is likely the variation of thermal conductivity with depth in the regolith
due to the presence of water ice. Including such a parameterization in the fitting
process improves the reasonableness of the best fit cap properties, mostly improving
the emissivities. The conductivities required in the north to provide the best fit are higher
than those required in the south. A completely physically reasonable set of fit parameters
could still not be attained. Like all prior published GCM simulations, none of the
cases considered are capable of predicting a residual southern CO2 cap.
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1. Introduction

[2] In every atmospheric General Circulation Model
(GCM), one of the first and foremost issues to consider is
the total mass of the atmosphere. Its value affects all subse-
quent calculations performed in the GCM, including dynam-
ics, radiative transfer, tracer and energy transport, chemical
reactions, etc. When a component of the atmosphere is
volatile (changes state for commonly encountered environ-
mental conditions), the surface pressure may be affected. For
the Earth, where the abundance of water vapor is modestly
high, many GCMs include the varying contribution of water
vapor partial pressure when calculating the full surface
pressure. For planets where their major atmospheric constit-
uents condense (such as Mars, Triton, and Pluto), consider-
ation of the role of phase change in varying the surface
pressure is important.

[3] Carbon dioxide (CO2) is the leading gaseous species
on Mars, comprising 95% of the atmosphere [Owen et al.,
1977]. Throughout a Martian year, up to 30% of the total
CO2 condenses onto the surface in winter polar regions [Kelly
et al., 2006]. The condensation of CO2 occurs because the
Martian atmosphere is sufficiently thin that transport of
sensible heat is unable to sustain the winter polar atmosphere.
As a result, the temperatures fall until the frost point of CO2

(also loosely referred to as ‘‘condensation point,’’ although
condensation usually refers to the phase change from gas to
liquid) is reached, after which thermal infrared losses are
buffered by latent heating.
[4] The Viking landers (VLs) provide the only interannual

records of surface pressure on Mars. These records contain
variability on several different time scales. Variations on time
scales of seconds, hours, and days are associated with
boundary layer turbulence, the thermal tides, and large-scale
weather systems, for example. However, when the high
frequency component is ignored, the surface pressure varia-
tion at a specific location on Mars (Figure 1) is largely
determined by the bulk mass of atmosphere, though small
contributions due to standing systems over long periods like
the condensation flow and the intertropical lows and sub-
tropical highs are also present. Therefore, to some significant
degree of precision, the VL pressure records can be taken as
topographically shifted records of the bulk atmospheric mass
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[Hess et al., 1977]. Fitting the observed VL pressure cycle
also establishes a baseline for climate studies, both short-term
and long-term. As shown in Figure 1, the dominant long-
period signal is the very repetitive annual cycle that can be
identified with the atmosphere freezing out to form the
seasonal polar caps, followed by the caps’ decay due to
sublimation back to the atmosphere [Hourdin et al., 1993].
Models are often tuned to match this annual cycle, though
small errors in amplitude and (especially) phase are often
tolerated, depending on the interests of a particular study
[Forget et al., 1998; Haberle et al., 2008; Hourdin et al.,
1993; Pollack et al., 1993; Richardson and Wilson, 2002].
Indeed, the quality of fits in GCMs is in some sense sur-
prisingly poor. For a system that should be driven primarily
by radiative, latent, and thermal conductive heating processes
at the caps, it would seem that a near perfect fit should be
attainable. An accurate simulation of the pressure cycle
would also be desirable for many applications where good
prediction of the surface pressure is needed as a boundary
condition, such as surface wind stress calculation, spacecraft
entry-descent-landing analysis, etc. In reality, the main rea-
son that ideal fits have not been attained is due to the
computation involved: the problem reduces to one of search-
ing for the best fit parameters using a relatively large number
of simulations (certainly ‘‘large’’ by standards prior to the
early 2000s).
[5] There are historical attempts to ‘‘fit’’ the CO2 cycle.

Wood and Paige [1992] proved that it is possible to fit the
VL data to within several Pascal using a one-dimensional
(1-D) diurnal and seasonal thermal model without any
explicit atmospheric contribution to the heat balance. The

albedos and emissivities of the northern and southern
seasonal CO2 caps and total mass of CO2 in the system
were tuned and kept constant with time. In their 1-D study,
the residual between the modeled pressure in the best case
scenario and the observed was as small as a few Pascal.
However, their best fit parameter values differ from the
current estimates for the caps’ radiative properties. If
values from Wood and Paige [1992] are used in a GCM,
the resulting pressure curves are not unreasonable, but the
lack of an atmosphere and the use of constant thermal
inertia translates to offsets that yields a GCM cycle nota-
bly worse than what the same parameters produces in the
1-D model.
[6] It is clear from 1-D modeling that tuning of the cap

properties will allow the modeled CO2 cycle to be improved.
It seems the standard for Mars GCMs is to accomplish this
tuning ‘‘by-eye.’’ However, the resulting parameters are not
physical compared with spacecraft observations. For exam-
ple, the cap albedos have to differ dramatically between the
poles, with the northern values required to be much higher
than observed [Haberle et al., 2008; Kieffer et al., 2000;
Kieffer and Titus, 2001]. One possible way to improve the
reasonableness of the parameters is to include other effects,
such as the thermal conductivity induced by subsurface water
ice [Haberle et al., 2008]. However, to date there has not been
an attempt to systematically determine the cap properties
needed in a GCM to produce a seasonal pressure cycle within
the VL instrument error. Here, we present a recipe that can be
used to calibrate a GCMpressure cycle, and we provide some
discussion of what areas of uncertainty still remain in the
understanding of the CO2 cycle on Mars.

Figure 1. (top) Pressures at the VL sites for the control case (northern seasonal cap albedo, 0.77; northern
seasonal cap emissivity, 0.57; south albedo, 0.5; south emissivity, 0.8; total CO2mass index, 1.0). Grey line,
MarsWRF surface pressure at VL1 location; magenta dashed line, smoothed MarsWRF surface pressure at
VL1 location; black line, MarsWRF surface pressure at VL2 location; green dashed line, smoothed
MarsWRF surface pressure at VL2 location; blue dashed line, smoothed VL1 observation; red dashed line,
smoothed VL2 observation. (bottom) Difference between the smoothed VL measurements and MarsWRF
simulation: blue line, VL1 site; red line, VL2 site.
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[7] In this paper, we describe the development and
execution of a benchmark study for reproducing the observed
surface pressure cycle in a Mars GCM. We specifically use
the Martian implementation of the planetWRF model
[Richardson et al., 2007]. The reason that Wood and Paige
[1992] were able to generate excellent fits of the VL pressure
cycle is that their 1-D model is simple and computationally
cheap: hundreds of runs were made to cover the parameter
space so that a best fit can be identified. Hundreds of runs for
any sophisticated GCM is generally not feasible in a reason-
able amount of time, nor are such runs necessary with our
proposed method. Our technique involves the creation of an
ensemble of simulations that are used to understand how the
model’s representation of the VL surface pressure cycles
responds to perturbations of different parameters. Knowing
these relationships, we use an iterative linear method to find
the best set of parameters to fit the VL data. The method can
fit the VL data with a very high degree of accuracy: com-
parable to, if not better than, the fit using the simpler one-
dimensional model [Wood and Paige, 1992]. This approach
is non model specific and is suggested as an efficient means
of finding the parameters for a best fit pressure cycle for any
GCM. After demonstrating the method for the set of param-
eters chosen by Wood and Paige [1992], we proceed further
to study how changes in soil thermal properties due to sub-
surface water ice effect the model’s representation of the VL
surface pressure record.
[8] The fact that Wood and Paige [1992] were able to fit

the pressure cycle using a simple model has profound
meaning. It suggests that the physics included in the model,
namely the surface heat balance at the poles, is the control-
ling physics for modeling the CO2 and pressure cycles. The
nonphysicality of the cap parameters retrieved from theWood
and Paige [1992] scheme does not invalidate the approach:
instead it demonstrates that there exists a range of processes
that effect the polar energy balance that are not incorporated
(‘‘resolved’’) in the model and hence their effects are
‘‘aliased’’ (or ‘‘bundled’’) into the estimated best fit param-
eters: for example, an unrealistic albedo value may effectively
compensate for model-missing clouds. Further progress in
understanding the CO2 cycle, which is tantamount to under-
standing the polar energy balance, is now a question of
unbundling the various processes that are aliased into the
retrieved parameters. The way this can be done is by applying
models withmore complete sets of explicit physics. Applying
the same fitting routines within a hierarchy of increasingly
complex models will allow the progressive unbundling of
important physics affecting the polar heat balance. Where
will it all end? At some point a set of physically plausible
radiative parameters (potentially in the form of time and
spatially varying parameters defined by a physical under-
standing of the ice microphysics and formation history) will
signal the completion of the unbundling process. For exam-
ple, in this study, we apply a GCM to the problem studied
in 1-D by Wood and Paige [1992]. Explicit treatment of
atmospheric dynamics, and spatially varying topography
and regolith albedo and thermal properties can thus be
unbundled from the parameters found by Wood and Paige
[1992]. The complexity of implementing this task arrives
from the very large numbers of runs required to find excellent
data fits. Such a brute-force method is not available when
running computationally expensive GCM simulations.

Hence, much of our discussion in this paper is in the
demonstration of a method to allow data fitting with a
relatively small number of runs. In principal, modified
versions of this approach can be applied to fit various other
data sets (e.g., temperature). In essence, it is a limited
implementation of a prototype form of data assimilation (here
we are pursing ‘‘parameter estimation’’ while most data
assimilation attempts ‘‘state estimation’’). Obviously, an
ideal approach would be to simultaneously fit the surface
pressure data along with records of air temperature, dust,
water ice, etc. This in fact would require a full parameter and
state data assimilation system, which is a future goal of our
research. That notwithstanding, the approach and schemes
presented here allow some new insight into the CO2 cycle
without having to resort to a full data assimilation system.
[9] In section 2, we discuss the relevant physical processes

contributing to surface energy balance, and we present our
initial sensitivity study for several important contributing
parameters. In section 3, we introduce the iterative linear
fitting method. We show the fitting results in section 4.
Physical interpretation of the best fit parameters is discussed
in section 5. Section 6 concludes this paper.

2. Surface Energy Balance and Sensitivity Study

2.1. Surface Energy Balance

[10] The key physics for the Martian annual CO2 cycle is
the surface energy balance. The instantaneous surface energy
balance equation when CO2 frost is on the surface is

S 1� að Þcos ið Þ � esT4 þ k dT=dzþ L dm=dt ¼ 0; ð1Þ

where S is the incoming solar flux at the current Mars-Sun
distance; a is the albedo, either that of bare soil or frost; i is
the solar incidence angle; e is the surface emissivity, either
that of bare soil or frost; s is the Stefan-Boltzmann constant
for blackbody emission; T is the surface temperature, either
that of bare soil or the frost temperature when frost presents;
k is the thermal conductivity of the soil; dT/dz is the vertical
temperature gradient at the surface with z positive down-
ward (therefore, k dT/dz is the upward conductive heat flux
at the surface); L is the latent heat of CO2 frost; dm/dt is the
CO2 frost deposition/sublimation rate. The thermal con-
ductivity of a material is related to its thermal inertia (I) by
the equation I2 = krc, where r is the density and c is the heat
capacity [Wood and Paige, 1992]. The product of r and c
is assumed to be 1.26 � 106 J kg m�6 K�1 in MarsWRF.
This is a simplified view of the problem. The GCM contains
additional terms associated with the atmospheric components
that contribute to this energy balance, which are usuallymuch
smaller when compared to the rest. Thus for simplicity with-
out losing clarity to the readers, we will refer to this equation,
which captures the majority of the physics.
[11] At any given time and location, when the radiative

and sensible heating terms in equation (1) are negative, latent
heating is required to balance the cooling and maintain the
temperature at the condensation point (the temperature
remains at the condensation point because any infinitesimal
temperature drop would yield a drop in the required satura-
tion vapor pressure. The difference between the actual
surface pressure and the infinitesimally lower saturation
vapor pressure would drive CO2 from the atmosphere onto
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the surface, liberating latent heat that would tend to bring the
temperature back up to the point where the atmospheric
pressure and the saturation vapor pressure again agree). As
a result, negative net radiative and sensible heating yields
CO2 gas conversion to ice and deposition on the surface.
When net heating is positive and CO2 ice is present on the
surface, some amount of CO2 frost becomes gas until the
surface is exhausted of all its CO2 ice cover. These phase
exchange processes are usually assumed to be instantaneous
in GCMs.
[12] Extensive work has been done examining water ice

cloud and CO2 ice cloud formation. Modeling studies found
evidence showing their importance in the polar energy
budget by influencing the surface properties, temperature,
and dynamics [Colaprete et al., 2005, 2008; Richardson et
al., 2002]. Because the microphysics modeling of clouds in
the Martian atmosphere is a subject under investigation, we
do not include CO2 cloud formation or a water cycle in this
study (these processes will await further unbundling at a
future date).
[13] In selecting parameters to use for the fitting of the

CO2 cycle, we take into account what variables are going to
have a major effect on the polar energy balance and also
what aspects of the model are relatively well constrained.
For the radiative transfer, we use our standard solar and
thermal infrared radiative heating schemes and also chose to
prescribe the dust opacity distribution with the Mars Climate
Database ‘‘MGS’’ scenario parameterization. Global soil
albedo, emissivity and surface thermal inertia are used as
derived from spacecraft observations [Richardson et al.,
2007]. The parameters chosen to vary for the simulation are
those associated with the seasonal caps and the bulk
inventory of CO2: the albedo and the emissivity of the
seasonal CO2 ice caps (potentially separate values for each
pole), the global CO2 mass (both gaseous and solid phase),
and the thermal inertia of the polar regolith, which is a
mixture of soil and water ice. All the parameters are crucial
to the energy balance and the pressure cycle. In the sections
following, we first discuss the conventional tuning param-
eters, namely albedo, emissivity, and total CO2 inventory.
Then we discuss the less-studied varying thermal property
of the subsurface.

2.2. Usual Suspects: Albedo, Emissivity,
and Total CO2 Inventory

[14] The albedo determines the fraction of incoming solar
energy reflected back to space. In general, increasing the
albedo decreases the absorbed energy available to the land-
air system. In the Martian polar winter, as temperatures drop
to the CO2 frost point and CO2 deposits on the surface, the
high (bright) ice albedo further lowers solar heating, and
more CO2 freezes out. The magnitude of this feedback effect
depends on the value of the frost albedo. Thus, surface
pressure tends to lower as a result of an increased CO2 cap
albedo, and vice versa. We note that this effect is only
relevant when CO2 frost is present and it is receiving
insolation (an example of this is shown in Figure 3 (top),
discussed later).
[15] The emissivity of the seasonal caps participates in

maintaining surface energy balance differently than albedo
does. The larger the emissivity of a CO2 frost cap, the more
energy it releases to space. Thus a larger emissivity yields a

larger energy deficit, which in turn requires more conden-
sation of CO2 to release latent heat and compensate for the
energy deficit. The net effect is that an increase in emissivity
leads to a decrease in the surface pressure. Similarly to
albedo’s effect, we note that the effect of emissivity on
surface pressure is only relevant when CO2 frost is present,
though it can operate throughout polar night (this is also
present in Figure 3 (top), discussed later). This means that the
effects from albedo changes and from emissivity changes
have different longevity and prominence: while albedo only
acts when the seasonal caps are exposed to the sun, emissivity
acts as long as the surface frost exists. Therefore, the albedo
‘‘footprint’’ (the effect on the surface pressure cycle due to
variations of albedo) for a given pole is nonzero only later in
its season of frost coverage, whereas the emissivity footprint
is present throughout the frost coverage season.
[16] The total mass of CO2 in the system influences the

surface pressure cycle in a very linear manner. Since none of
the terms in equation (1) are very sensitive to total atmo-
spheric mass, the surface frost amount changes very little
when total mass of CO2 is changed (this is also present in
Figure 3 (top), discussed later). Of course, one should not
make very large perturbations to the CO2 inventory lest the
planet migrate to another climate regime [Mischna et al.,
2000]. It should also be noted that since the model does not
predict the development of a residual CO2 ice cap (nor does
any published GCM), increasing the surface pressure is pos-
sible by increasing the total CO2 inventory.

2.3. Water Ice in the Subsurface Layer

[17] In equation (1), the vertical heat flux is determined
by the temperature gradient near the surface and the soil’s
thermal conductivity. Subsurface thermal structure is deter-
mined by the energy input from the surface and the thermal
property underneath. Typically, the subsurface thermal con-
ductivity is assumed to be the same as that of the surface. It
has recently been suggested that the subsurface water ice
would affect the exchange of CO2 between the atmosphere
and the seasonal caps greatly [Haberle et al., 2008]. The
presence of water ice increases the thermal conductivity of
the soil. In the summer, when the surface is not covered by
frost, more heat conducts downward compared to the situa-
tion where homogenous dry soil is usually assumed. When
this extra amount of heat is released in the winter, less sur-
face CO2 ice forms, and surface pressure increases accord-
ingly. Therefore, changing the thermal inertia (equivalent to
the thermal conductivity) of the regolith changes the thermal
structure and heat flux of the soil. Eventually, it changes the
surface pressure cycle.
[18] In order to investigate how subsurface water ice

affects the CO2 cycle, we modified the subsurface model
in the MarsWRF to handle vertical gradients of soil thermal
conductivity. At depth where water ice becomes stable and
has significant mass, we increase the thermal conductivity
of the soil. This is similar to the two layer model used by
Haberle et al. [2008], in which the regolith beneath a certain
depth (8.05 cm for the northern hemisphere and 11.16 cm
for the southern hemisphere) was fully filled by a water ice
table from 55� to 90� latitude (Figure 2, right); however, we
do not use fixed depths across the two hemispheres.
[19] In order to parameterize the three-dimensional dis-

tribution of water ice in the subsurface, we include the water
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ice content map provided by the Mars Odyssey Gamma Ray
Spectrometer (GRS) [Boynton et al., 2002; Feldman et al.,
2002, 2004] and the depth of the permanently stable sub-
surface water ice predicted by Schorghofer and Aharonson
[2005] in MarsWRF (Figure 2). Water ice is only seasonally
stable at midlatitudes [Schorghofer and Aharonson, 2005],
and the available water vapor in the atmosphere does not
seem to be enough to fill meters of regolith [Smith, 2002].
Therefore, we set the water ice table depth to be the cutoff
line of the permanently stable water ice, which changes with
latitude and longitude.
[20] The other parameter to decide upon is the thermal

conductivity, or equivalently the thermal inertia, of the soil
mixed with water ice (hereafter, we loosely call it a water
ice table even though it is not pure water ice). Viking
Infrared Thermal Mapper (IRTM) observations show that
the apparent thermal inertia of the dry Martian surface
ranges from 46 to 630 J m�3 K�1, with a global average
of 275 J m�3 K�1 [Paige, 1992]. This agrees with obser-
vations from the Thermal Emission Spectrometer (TES) on
board of Mars Global Surveyor (MGS) [Putzig et al., 2005].
Pure water ice has a thermal inertia of 2200 J m�3 K�1.
Assuming a mixture has 80% of water ice, the thermal inertia
of the mixture can range from 100 to 1200 J m�3 K�1,
depending on the thermal inertia of the host regolith. These
numbers provide physical constraints for the fitting param-
eters in later sections. We do not assume the water content
provided by GRS for the water ice table because that data set
is not vertically well resolved. The water information from
GRS is only used for the geographical distribution.We set the

threshold for water content to 9% in order to cover the
latitudes of 55� and poleward.
[21] Of course, we do not have to limit ourselves to these

numbers in the sensitivity study.We find that the VL pressure
cycle is very sensitive to the thermal inertia assumed for the
water ice table (Figure 3, bottom). A change in the assumed
water ice table thermal inertia changes the VL pressure cycle
significantly. As expected, larger thermal inertia leads to
higher surface pressure. We find that the water ice table
thermal inertia shows a very similar footprint to that of the
emissivity: the increasing phase of their signals lasts from Ls
210� to 360� in the northern winter and from Ls 30� up to
180� in the southern winter; the decreasing phase of the
thermal inertia signal ends shortly before that of the emis-
sivity. However, we find that thermal inertia does not project
a change on the surface pressure cycle as linearly as emis-
sivity does. For example, doubling the thermal inertia per-
turbation does not necessarily double the resulting pressure
change. In addition, changing the thermal inertia modifies the
phase of the pressure signal. Also of note, the sensitivity to
thermal inertia evidently saturates: when we extend the
thermal inertia above a certain amount, the pressure cycle
fails to respond. At that point, the soil in the model contains
the maximum possible amount of heat it can. Fortunately for
the prospect of fitting the pressure cycle, with the current
depth of soil, MarsWRF seems to reach that extreme for a
thermal inertia value larger than 5000 J m�3 K�1, which is
much larger than most of the possible material in the regolith
including pure water ice. Nonetheless, we need to be careful
when we perform the linear retrieval later, where we assume

Figure 2. (left) Color shows the subsurface ice content from GRS; white contours indicate the depth of
permanently stable water ice in meters suggested by Schorghofer and Aharonson [2005]. (right) Black
curve indicates the zonal average of the depth of permanently stable water ice table; blue curve indicates
the ice table depth used by Haberle et al. [2008].
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the pressure cycle always responses linearly to all the
perturbations.
[22] The average thermal inertia of dry Martian soil has

an annual skin depth around 1 m, which is usually deeper
than the stable water ice depth. Our subsurface model in
MarsWRF covers more than 7 m, deeper than the annual skin
depth of pure water ice (thermal inertia of 2200 J m�3 K�1,
skin depth 5 m). The stable water ice depth was calculated
assuming the soil porosity is about 70%. The pressure cycle
is not very sensitive to the assumption of the underlying
soil porosity. This is because the stable ice depth does not
change much with soil porosity near the poles, where the
low temperature allows subsurface water ice to preserve
easily.

2.4. Mathematical Representation

[23] In order to simplify the discussion and the descrip-
tion of the linear fitting method, we introduce the following
mathematical notation. In the initial experiments, five param-
eters in MarsWRF are tuned: the albedo and emissivity of the
seasonal CO2 caps for both the north and south poles, and the
total mass of CO2 in the system. The linear methodology
discussed in section 3 relies on making relatively small
corrections; hence we constructed a baseline case with
parameters similar to those used by Wood and Paige
[1992]. The northern cap albedo is set to 0.770, northern
cap emissivity to 0.570, southern cap albedo to 0.500,
southern cap emissivity to 0.800 and total CO2 mass to

2.90 � 1016 kg of CO2 (we use an index number 1.00 here-
after to represent this reference total CO2 amount).We denote
the parameter vector as A, a column vector whose rows con-
tain the parameters used in an experiment in the order just
mentioned. For the baseline case, we write

A0 ¼ 0:770 0:570 0:500 0:800 1:00½ �T; ð2Þ

where superscript T denotes vector transpose. The values
in this parameter vector are used in MarsWRF to yield its
corresponding baseline model atmosphere. After the model
reaches a steady state (taken to be aMartian year; note that the
initial subsurface temperature were taken from the results of a
prior decadal simulation and were thus very nearly in balance
from the outset), a Mars year of surface pressure output is
diagnosed for its predicted values of the Viking Lander 1
(VL1) data record. This diagnosis requires interpolating
within the output to find the surface pressure at the actual
latitude, longitude, and elevation of the lander (gray line in
Figure 1). It is evident that the model’s predicted pressure
cycle has larger short-term variations in the second half of
the year, and this is consistent with observations and previous
GCM studies. Details of those short-term variations are
beyond the scope of this study. For the purpose of tuning the
uncertain parameters in our vector, we are only interested
in the long-term trend. Hence we apply a 9-day running
averaging to the model output’s predicted surface pressure

Figure 3. Response of MarsWRF surface pressure at VL1 location after positive perturbations.
(top) Perturbation to north seasonal cap albedo (thin black line, P1), north emissivity (thin gray line, P2),
south albedo (thick black dash line, P3), south emissivity (thick gray dash line, P4), and total CO2 mass
(thick black line, P5). (bottom) Perturbation to the thermal inertia of the water ice table at the north polar
region by 600 J m�3 K�1 (thin black dash line, P6

e), south by 600 J m�3 K�1 (black line, P7
e), both by

600 J m�3 K�1 (thick gray line, Pextra
e ), both by 1000 J m�3 K�1 (thick black line), both by 2000 J m�3 K�1

(thick black dash line), and both by 3000 J m�3 K�1 (thick gray dash line). The last two curves only appear
partially because of the scale limit.
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record to remove the undesired high frequency components.
This smoothed pressure cycle, X0, a column vector with
669 rows (each row represents a sol) is plotted in Figure 1 as
the dashed magenta line. We write

X0 ¼ I W A0ð Þð Þ 	 F A0ð Þ; ð3Þ

where operator I denotes all the required interpolations and
smoothing, and operator W denotes the MarsWRF model
when run with the parameters included in A0. We can com-
bine these two operators into one effective operator, F, that
maps a given parameter vector to a predicted smoothed VL1
pressure record.
[24] In order to sensibly compare our smoothed model

predicted pressure cycle to the observations, which also
exhibit high frequency variations due to tides and baroclinic
weather systems, we have used a smoothed, continuous
representation of the VL1 observations in non dust storm
conditions. Instead of applying the same 9-day running
average as we have to the model output, we use the polyno-
mial fit of the non dust storm VL1 pressure curve [Tillman et
al., 1993]. Using a polynomial allows us to compare the
model to the data in regions where there are gaps in the VL1
data record. The smoothed VL1 observations are presented
by the dashed blue line in Figure 1, with one value of VL1
surface pressure per sol (669 values in a Martian year). We
follow the same practice with the VL2 observation, shown in
Figure 1 as the red dashed curve, though we do not use the
VL2 observations within the linear fitting method.
[25] As is evident in Figure 1, the smoothed pressure

cycle generated using the baseline parameter set (magenta
dashed line for VL1 and green dashed line for VL2) differs
from the observations (blue dashed line for VL1 and red
dashed line for VL2). The largest differences are in the
northern summer (or the southern winter), where phase errors
are evident. The residual, defined as the model predictions
less the VL observations, vary from 0 to 20 Pa throughout
most of the year, with an average of 8.2 Pa and a standard
deviation of 7.0 Pa at the VL1 site. The root mean square
(RMS) of the residual at the VL1 site is 10.8 Pa, or 1.2–1.6%
of the seasonal cycle.
[26] To estimate the sensitivities of MarsWRF to the

parameters within A0, we make five additional MarsWRF
model runs, one for each element in A0. Each run adds a
small perturbation to the value of one parameter in A0 while
keeping the other values unchanged. Once completed, we
apply the same interpolation and averaging to obtain the
five predicted smooth pressure cycles at the VL1 location
associated with the five perturbed parameter vectors. We
denote the perturbed parameter vectors asAi (i = 1, 2, 3, 4, 5),
and analogously to equation (3), their resulting pressure
records are Xi (i = 1, 2, 3, 4, 5). To be clear, the order of
the perturbations associated with the i index follows the order
of parameters within A0: northern seasonal cap albedo,
northern cap emissivity, southern cap albedo, southern cap
emissivity and the index number of the total CO2 mass in
MarsWRF, respectively. We chose the following set of
perturbed parameter vectors Ai:

A1 ¼ 0:820 0:570 0:500 0:800 1:00½ �T; ð4Þ

A2 ¼ 0:770 0:670 0:500 0:800 1:00½ �T; ð5Þ

A3 ¼ 0:770 0:570 0:600 0:800 1:00½ �T; ð6Þ

A4 ¼ 0:770 0:570 0:500 0:900 1:00½ �T; ð7Þ

A5 ¼ 0:770 0:570 0:500 0:800 1:06½ �T: ð8Þ

These vectors are related to the baseline parameter vector
through

Di ¼ Ai � A0; i ¼ 1; 2; 3; 4; 5ð Þ: ð9Þ

Similarly, we define the perturbation pressure vectors

Pi ¼ X i � X 0 ¼ F Aið Þ � F A0ð Þ; i ¼ 1; 2; 3; 4; 5ð Þ: ð10Þ

While a matrix whose columns are the Di vectors is a 5 � 5
diagonal matrix, a matrix whose columns are the Pi vectors
is 669 � 5 and potentially has nonzero entries everywhere.
The Pi vectors are shown in Figure 3 (top), and one can see
that they are in general nonzero, except for the vectors
associated with perturbed albedo and emissivity when they
are not contributing to the surface energy balance.
[27] This same procedure for gauging the model’s sensi-

tivity to uncertain parameters can easily incorporate other
components. Later in this study, we extend the parameter
vector to include the water ice table thermal inertia. This
requires defining a new baseline case with parameter vector

Ae
0 ¼ 0:770 0:570 0:500 0:800 1:00 1:20 1:20½ �T; ð11Þ

where the definitions of the first five elements of this vector
are the same as before, and the sixth and seventh elements
correspond to the thermal inertia of the subsurface layer in
the northern polar region and the southern polar region, in
units of 1000 J m�3 K�1. We use the same notation for the
operators that map a given parameter vector to a predicted
smoothed pressure curve for VL1:

X e
0 ¼ I W Ae

0

� �� �
¼ F Ae

0

� �
: ð12Þ

To be clear, in the experiments where only the first five
parameters are varied, MarsWRF still runs with assumed
values for the sixth and seventh parameters. However, their
values are not available for modifying to better fit the VL1
pressure data. When the parameters for subsurface thermal
inertia in the two hemispheres are available for change, we
specify two new parameter vectors:

Ae
6 ¼ 0:770 0:570 0:500 0:800 1:00 1:50 1:20½ �T; ð13Þ

Ae
7 ¼ 0:770 0:570 0:500 0:800 1:00 1:20 1:50½ �T: ð14Þ

These extended perturbed parameter vectors logically extend
to the definitions of D6

e, D7
e, P6

e and P7
e via equations (9) and

(10). The corresponding perturbation pressure vectors for P6
e
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and P7
e are shown in Figure 3 (bottom). Also shows is one

additional perturbation pressure vector obtained from run-
ning MarsWRF with

Ae
extra ¼ 0:770 0:570 0:500 0:800 1:00 1:50 1:50½ �T:

This is included to demonstrate that Pextra
e is roughly the

sum of P6
e and P7

e, thereby demonstrating these parameters
behave fairly linearly. Note that Pextra

e is not used in the
fitting method described in section 3.

3. Linear Fitting Methods

[28] We chose to fit the pressure cycle at just one of the
VL sites, reserving the other as an independent resource to
check the retrieved set of parameters. Since the VL1 pres-
sure record is much less susceptible to local weather distur-
bances and large global dust storms, and is more complete in
turns of time coverage than the VL2 record, the VL1 data are
taken to be the preferable target for model fitting, as was
usually used in earlier studies [Forget et al., 1998;Wood and
Paige, 1992]. It should be noted, however, that the method
we employ can easily include VL2 data simultaneously.
[29] The Viking pressure transducers were calibrated to

about 2 Pa [Tillman, 1988]. This 2 Pa instrument error is the
only meaningful number that one can ascribe to ‘‘good
enough’’ in regards to fitting the observations. To fit better
than 2 Pa could be unwarranted and to fit worse than 2 Pa
betrays shortcomings in the model. Without some reference
to a meaningful numerical value, all fits are more or less
qualitative.
[30] In order to fit the smoothed VL1 pressure cycle, we

use a simple linear method to first construct a best fit
pressure curve from the baseline scenario plus a linear
combination of the 5 perturbation pressure vectors Pi. We
then assume, as a consequence of linearity, the resulting best
fit MarsWRF parameters are equal to the baseline parame-
ters plus the same linear combination of the perturbation
parameter vectors, Di. If the linearity assumption holds,
then we should find that nonlinearly validating the best fit
parameters (by running MarsWRF with those values and
applying the interpolation and smoothing operators) yields a
pressure cycle very similar to both the best fit pressure
curve found from the linear combination of Pi, and the
smoothed VL1 measurements.
[31] To illustrate the assumptions and consequences of

our linearity assumption, consider a vector of perturbations,
dA, to the baseline parameter vector. If the nonlinear operator
F is applied to this perturbed parameter vector, then

X0 þ dX ¼ F A0 þ dAð Þ: ð15Þ

Performing a Taylor series expansion of the right hand side
of equation (15) about the baseline vector:

X0 þ dX ¼ F A0ð Þ þ FdAþ O k dA k2
� �

; ð16Þ

where F is the Jacobian matrix of partial derivatives of
F(A0) with respect to the elements in A, evaluated about A0.
Note that in our case F is a 669 � 5 matrix. If the vector of
parameter perturbations is small, where ‘‘small’’ is defined

by the ratio of the vector norms of dA and A0 being less
than 1, then one can safely neglect the higher-order terms
in equation (16), represented by O(kdAk2). Neglecting these
terms and subtracting the relation in equation (3) yields

dX ¼ FdA; ð17Þ

which is a linear relationship between perturbations in
parameters and their resulting perturbations in the pressure
curve. An immediate consequence of this linear relation-
ship is that a constant factor change in dA gives the same
factor change in dX.
[32] The potential complexity of equation (17) is contained

within the matrix F (which itself is defined in equations (3)
and (16)). While it is theoretically possible to evaluate the
Jacobian matrices of MarsWRF (W) with respect to specific
parameters (i.e., the derivative of the model variables with
respect to the parameters) and also for the interpolation and
smoothing operators (I) for MarsWRF output, it is a difficult
feat requiring lots of code development. Instead of attempting
to explicitly calculate F, we approximate it by way of our
explicit introduction of small perturbations to the parameters
withinA0 (as described in section 2). Hence, the columns of
F are related to the perturbation pressure vectors and the
magnitudes of parameter perturbations:

Fi ¼ Pi= k Di k; i ¼ 1; 2; 3; 4; 5ð Þ; ð18Þ

where Fi are the columns of the F matrix. Alternatively,
since the matrix with Di as its columns, which we denote D,
is diagonal, then F = PD�1, where P is the perturbation
matrix with Pi as its columns and the superscript ‘‘�1’’
denotes the matrix inverse.
[33] To fit the smoothed VL1 data, we assume

Y ¼ X 0 þ Paþ e; ð19Þ

where Y denotes the smoothed VL1 data, a is a column
vector (5 � 1) of linear combination coefficients, and e is a
column vector (669 � 1) of residuals. We find the best fit
linear combination coefficient via an iterative method that
minimizes the L2 norm (the root mean square) of e. Hence,
we define a quadratic cost function that gauges the (possibly
weighted) magnitude of the residual vector:

C að Þ ¼ 0:5�eTWe ¼ 0:5� Y �X0� Pað ÞTW Y �X0� Pað Þ;
ð20Þ

where W is a diagonal matrix that can be used to assign
uneven weights to elements of the noise vector at dif-
ferent times of the year (if desired). The cost function in
equation (20) is of a standard form and can be easily min-
imized by many different algorithms; because a has only 5
or 7 elements here, we employ a straightforward downhill
simplex method. When the minimizing algorithm reaches a
(possibly local) minimum for the cost function C, the
corresponding a = af minimizes e. The obtained best fit
for Y based on the linear combination is then

X f ¼ X0 þ Paf : ð21Þ
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[34] As the ultimate goal of this method is to find the
MarsWRF parameter set that best fits the smoothed VL1
record, we need to relate Xf in equation (21) to Af, the best
fit parameter set. If the linear truncation of the Taylor series
in equation (16) holds, then changes in X can be linearly
related to changes in A, as in equation (17). Hence, we
assume that the best fit parameter vector is related to the
baseline parameter vector by the same linear combination
coefficients that relate the best fit pressure cycle to the
baseline pressure cycle prediction:

Af ¼ A0 þ Daf : ð22Þ

In order to gauge the success of the fitting method, and thus
the validity of the linearity assumption, one must run
MarsWRF with parameters Af and apply the interpolation
and smoothing operator to the output:

X 0
f ¼ F Af

� �
: ð23Þ

[35] If X0
f is very similar to the linear method predic-

tion, Xf, then we can be assured the linearity assumption
was valid. If X0

f and Xf differ substantially, then one must
reevaluate use of this method, though we have found that
for poorly chosen baseline parameters, successive appli-
cations of the method can eventually yield an acceptable
solution for Af .
[36] When we write X = F(A), we consider the surface

pressure to be a function of the albedo and the emissivity of
the polar caps and the total mass of CO2 in the system (the
extended vector also considers the thermal inertia of the
subsurface ice table). By virtue of the linearity assumption,
this method effectively retrieves these parameters Af, from
observations of surface pressure, even though the involved
operators (I and W) are nonlinear. In this respect, this linear
fitting method is not new. The method is essentially a stan-
dard practice in atmospheric spectroscopy data retrieval [e.g.,
Guo et al., 2007] and data assimilation [e.g., Menemenlis et
al., 2005].

4. Results

4.1. Standard Fitting With Emissivity, Albedo,
and Total CO2 Mass

[37] We obtain a positive perturbation matrix, P+, to
replace P in equation (19):

Pþ ¼ P1 P2 P3 P4 P5½ �: ð24Þ

We describe it as ‘‘positive’’ because all the columns in P+

were obtained by setting one of the five parameters larger than
that in the baseline case and differencing the resulting pressure
cycles. Similarly, we can construct a negative perturbation
matrix P�, based on negative perturbations. We fit the VL1
pressure record with these two perturbation matrices and
obtain two best fit parameter vectors (also listed in Table 1):

Aþ
f 4:1 ¼ 0:796 0:484 0:467 0:787 0:978½ �T; ð25Þ

A�
f 4:1 ¼ 0:793 0:485 0:454 0:784 0:978½ �T: ð26Þ

The values in these two parameter vectors are very close. We
average the two best fit parameter sets to get the average best
fit parameter vector:

Af 4:1 ¼ 0:795 0:485 0:461 0:785 0:978½ �T: ð27Þ

The two linear fits corresponding to Af4.1
+ and Af4.1

� , and
their average are shown in Figure 4 (top); their residuals
are shown in Figure 4 (bottom). All fitted curves match
very closely with the smoothed VL1 data. The largest
misfits are found in the northern winter, when baroclinic
waves are most active [Hess et al., 1977]. The largest error
is less than 10 Pa, or about 1% of the annual maxima.
[38] We use the average parameter vector Af4.1 to drive

MarsWRF. Figure 5 shows the resulting model output. The
pressure cycles corrected for VL positions are indicated by
the black and the gray curves. The smoothed model surface
pressure cycles (green and magenta dashed curves) show
great agreements with the smoothed VL data (red and blue
dashed curves) at both landing sites (note that only the
VL1 data were used for the fit). Figure 5 (bottom) shows
the difference between the smoothed simulation and the
smoothed data. For the VL1 site, the error is always less
than several Pascal. The residual mean is 0.3 Pa and the
standard deviation is 3.2 Pa. The RMS of the residual is
3.2 Pa, or 0.35–0.48% of the seasonal cycle. MarsWRF
predicts slightly higher surface pressure near Ls = 20� and
240�, lower surface pressure near Ls = 150� and 270�.
Similar, if not identical, residual patterns can be found in
the linear fit (blue dashed line in Figure 4, bottom). It sug-
gests that our final perturbation to A0 is small enough for
linearity to hold (equation (19)). In this regime, the operator
F can be considered close to linear. The translation back to
the parameter space is therefore valid and reflected directly
in the forward model (i.e., MarsWRF) output.
[39] We notice that the smoothed surface pressure cycle at

the VL2 site follows the observation closely in most of the
year, but it does not line up perfectly with the observations
in the northern winter and around Ls = 50�. Because we
do not perform the pressure fitting for the VL2 data, such
discrepancy is not surprising. Nonetheless, the fact that the
model agrees with data even at the VL2 site for the majority
of the year is impressive. It suggests that the hydrostatic
assumption and the dynamics in MarsWRF are consistent
with what actually happens on Mars. If pressure records at
both VL sites are to be fit simultaneously, we would need to
include the VL2 pressure responses in the perturbation
matrix and in the definition of the cost function. A trade-
off of accuracy between the two landing locations is there-
fore expectable. For the reasons discussed at the beginning
of section 3, we decided to perform the fitting only for the
VL1 pressure cycle.
[40] If achieving a better fit for a desired time frame is the

goal, we can adjust the weighting assigned to different
periods of time by modifying matrix W in the definition of
the cost function (equation (20)). In Figures 4 and 5, one can
find a subtle phase error at the pressure minima near Ls =
150�. In order to improve the fitting quality at this season, we
weight this period relatively more in the calculation of the
cost function. We chose to assign 50 times the normal
weighting to southern winter (Ls = 125� to 175�), 10 times
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to southern summer (Ls = 225� to 275�) and normal weight-
ing at all other times. With the updated weight matrix, the
following best fit parameter vectors are given by the linear
fitting method (also shown in Table 1):

Aþ
f 4:2 ¼ 0:814 0:424 0:461 0:744 0:966½ �T; ð28Þ

A�
f 4:2 ¼ 0:820 0:434 0:433 0:764 0:971½ �T: ð29Þ

We average the two to obtain

Af 4:2 ¼ 0:817 0:429 0:447 0:754 0:968½ �T: ð30Þ

This parameter vector provides an excellent linear fit as
well, with residual mean of 0.5 Pa and standard deviation of
4.6 Pa. When validated using MarsWRF, the RMS of the
residual is 4.8 Pa, or 0.53–0.70% of the pressure level. In
both linear fit and model output, the residual in the southern

winter (Ls = 125� to 175�) is smaller and the phase shift is
less evident. The trade off, however, is that the errors at
other seasons become larger, which leads to a larger total
RMS error.
[41] The experiments above suggest that the southern

seasonal cap has low albedo and high emissivity, while the
northern seasonal cap has high albedo and low emissivity.
There is no intuitive explanation for why the two seasonal
CO2 caps would have opposite radiative properties. Obser-
vation from TES and Viking IRTM do not support such a
dichotomy in general [Kieffer et al., 1977; Kieffer and Titus,
2001; Paige et al., 1994; Paige and Keegan, 1994]. With just
the fitting parameters used in this section, the southern
parameters seem to match the observation from spacecrafts
much better than those retrieved for the north.

4.2. Fitting With Extended Parameterization
of Subsurface Water Ice

[42] Since the conventional five parameter fit does not
provide seasonal cap albedos and emissivities consistent

Figure 4. The linear fit of surface pressure cycle at VL1 site. (top) Gray line, smoothed VL1 data; green
dashed line, linear fit result using positive perturbation matrix P+; red dashed line, linear fit result using
negative perturbation matrix P�; blue dashed line, the average of the previous two linear fits. (bottom)
Green dashed line; residual in the fit using P+; red dashed line, residual in the fit using P�; blue dashed
line, the average residual.

Table 1. Fitting Parameters for Different Perturbation Matrix and Time Weighting

Methods

Parameters

Northern Cap
Albedo

Northern Cap
Emissivity

Southern Cap
Albedo

Southern Cap
Emissivity

Total Mass of CO2

in Systema

Positive perturbation constant weighting (A4,1
+ ) 0.796 0.484 0.467 0.787 0.978

Negative perturbation constant weighting (A4,1
� ) 0.793 0.485 0.454 0.784 0.978

Average, constant weighting (Af4,1) 0.795 0.485 0.461 0.785 0.978
Positive perturbation, nonconstant weighting (A4,2

+ ) 0.814 0.424 0.461 0.744 0.966
Negative perturbation, nonconstant weighting (A4,2

� ) 0.820 0.434 0.433 0.764 0.971
Average, nonconstant weighting (Af4,2) 0.817 0.429 0.447 0.754 0.968

aMass index number, 1.0 corresponds to total mass 2.90 � 1016 kg of the baseline case.
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with prior observations, especially in the north, we try to
improve the physics picture by including the subsurface
layer thermal property as fitting parameters. As demonstrated
in section 2.3, sensitivity studies show that the water ice
table thermal inertia has a similar footprint to that of the
emissivity. On the other hand, it does not project a change
in the surface pressure cycle that is as ‘‘linear’’ as that of
emissivity. However, as long as the perturbation is not too
large, we can still assume that the linear relationship holds.
[43] First, we try to extend the parameter vector to seven

dimensions by adding the thermal inertia of the water ice
table in the two hemispheres to the parameter vector. We
extend the baseline parameter by two more dimensions as
well and rewrite the baseline parameter vector as

A0 ¼ 0:770 0:570 0:500 0:800 1:00 0:275 0:275½ �T:

[44] The first five dimensions are defined as before. The
sixth and seventh dimensions correspond to the thermal
inertia of the water ice table in the north and south. In the
baseline case, the subsurface is completely filled with dry
soil. Therefore, the thermal inertia of the water ice table is
assumed to be 275 J m�3 K�1, which is a value for average
dry Martian soil. The perturbation vector P is also extended
to

P ¼ P1 P2 P3 P4 P5 P
e
6 P

e
7

� �
: ð31Þ

[45] Note that P6
e and P7

e were calculated with a different
baseline value of the water ice table thermal inertia. In order
to perform the linear fitting, we need to assume that these
two pressure perturbation vectors do not change regardless of

the baseline value. Undertaking a separate sensitivity study,
we find that this is a reasonable assumption for the baseline
values of 275 and 1200 J m�3 K�1, but later in this section we
will examine a case in which this assumption needs to be
reevaluated. Therefore, we use the same linear fitting method
and obtain a new best fit parameter vector

Af 4:3 ¼ 0:790 0:505 0:474 0:788 0:977 0:523 0:300½ �T: ð32Þ

[46] This parameter vector has no essential difference to
what we obtain from the conventional five-dimensional fit
(Af4.1). The corrections to the parameters are just a few
thousandths. When validated with MarsWRF, the residual
pattern is very similar to before with slightly higher RMS
error (about 3.97 Pa). It suggests that including a water ice
table thermal inertia as fitting parameters will not produce
a great improvement in the fitting. Thus, the conventional
five-dimensional fit is sufficient for most atmospheric
studies, in which the important thing is to obtain a surface
pressure cycle that is within instrument error, while the
accuracy of the retrieved frost radiative properties are
considered less relevant (and indeed, obviously incorrect
values can be tolerated, on the assumption that nonmodeled
physics are aliased in these values).
[47] As discussed by Haberle et al. [2008], the signifi-

cance of including subsurface ice is in a desire to gain
physical consistency, i.e., being able to fit the VL pressure
cycles with reasonable cap properties close to their observed
values. We setup an experiment using unity frost emissivity,
relatively small frost albedos, and subsurface water ice with
fixed uniform depths to the water ice table (Figure 2) as
assumed by Haberle et al. [2008]. We find that we are able
to reproduce a pressure cycle reasonably close to that mea-

Figure 5. Same as Figure 1, except MarsWRF outputs are generated using the best fit parameters
(northern seasonal cap albedo, 0.795; northern seasonal cap emissivity, 0.485; south albedo, 0.461; south
emissivity, 0.785; total CO2 mass index, 0.978).
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sured by VL1 (Figure 6, consistent with prior ‘‘by-eye’’
fitting but not as close as our five-parameter retrieval). While
the amplitude of the cycle agrees well with the observation,
the major discrepancy between the simulation and data is
in the first half of the year, where the phases of the two curves
do not perfectly agree. The same mismatch in phase can be
found in the NASA Ames Research Center (ARC) Mars
GCM simulations.
[48] The depth of the ice table will not in general be

uniform in latitude or longitude, yet its depth is evidently
readily predicted by simple 1-D water exchange models
[Mellon and Jakosky, 1993; Schorghofer and Aharonson,
2005]. Following the philosophy of trying to find the most
physically reasonable fit parameters, we decided to employ
latitudinally varying depths of the water ice table as derived
by Schorghofer and Aharonson [2005]. When we use these
depths values and reduce the thermal inertia of the water ice
tables from 2200 J m�3 K�1, we are also able to reproduce
a reasonable fit to the VL pressure cycles (Figure 7). The
quality of the fit is similar to that using the aforementioned
ARC GCM setup, with the same phase mismatch during the
northern summer. In this simulation, the water ice table top
depends on latitude, and the thermal inertia assumed for the
water ice table is not as high as pure water ice, with larger
values for the north. If we also assume the same mixing
ratio of water to dry soil in the water ice table, we find that
the thermal inertia of the dry soil in the north is higher than
the south, which agrees with IRTM and TES surface thermal
inertia maps.
[49] Our sensitivity study has already shown that the

seasonal cap emissivity and the water ice table thermal
inertia have very similar footprints in the VL pressure cycle.

In other words, the role of emissivity in the linear fitting
may be essentially replaced by the water ice table thermal
inertia (and by extension, the emissivity from the conven-
tional five-parameter fit may include aliased effects from
neglected thermal inertia variations). Therefore, we proceed
to do the numerical fitting with unity emissivity for the
seasonal caps and instead vary the water ice table thermal
inertia. In this case, the parameter vector still has five
dimensions but the two dimensions corresponding to the
seasonal cap emissivity are replaced by the thermal inertia
of the water ice table in the north and south (their depth
derived by Schorghofer and Aharonson [2005]). The best fit
parameter vector thus retrieved is

Af 4:7 ¼ 0:731 0:546 0:948 3:90 1:80½ �T: ð33Þ

[50] The new fitting result is show in Figure 8. The RMS
of the residual is now roughly 6.9 Pa. When we use these
parameters in MarsWRF, we are able to replicate the VL1
record very well (shown in Figure 9). The RMS of the error
is 8.7 Pa, slightly larger than with the prior five-parameter
(and seven-parameter) fit, but satisfactory. No obvious phase
disagreement between the two smoothed curves can be
found.
[51] In summary, we succeed in fitting the VL data with

the values of the albedos of the seasonal caps, the total CO2

inventory, and the subsurface layer thermal inertia, alongwith
an assumption of unity seasonal cap emissivity. Although the
fitting still retrieves an albedo of the northern seasonal cap
higher than the south, the values are closer to the observation.
The linear fitting results suggest that polar regolith with a

Figure 6. Same as Figure 1, except fitting parameter are the same as Haberle et al. [2008]. Northern
seasonal cap albedo, 0.6; northern seasonal cap emissivity, 1.0; south albedo, 0.5; south emissivity, 1.0;
total CO2 mass index, 1.003. Water ice table starts at 8.05 cm in the northern hemisphere and 11.16 cm in
the southern hemisphere. Thermal inertia of ice table is 2200 J m�3 K�1.
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higher thermal conductivity (due to subsurface water ice) is
able to represent the extra heat source in autumn and winter,
that used to be provided by excessively low cap emissivity in
studies prior to Haberle et al. [2008]. The best fit thermal
inertia values are very different in the two hemispheres,

seemingly necessary to account for the different pressure
levels during northern and southern winters. The predicted
thermal inertia of the northern water ice table is much larger
than that of the south, suggesting some sort of dichotomy in

Figure 7. Same as Figure 1, except the driving parameters are as follows: northern seasonal cap albedo,
0.6; northern seasonal cap emissivity, 1.0; south albedo, 0.5; south emissivity, 1.0; total CO2 mass index,
1.003; thermal inertia of the ice table is 1800 J m�3 K�1 in the northern hemisphere and 900 J m�3 K�1

in the south. Boundary between the dry soil and the water ice table is set to the boundary of permanently
stable water ice suggested by Schorghofer and Aharonson [2005].

Figure 8. (top) Smoothed VL pressure cycle (gray line) and the fitted pressure curve (dash line) using
albedo of the two seasonal caps, total CO2 inventory, and the thermal inertia of the water ice table at two
different hemispheres. (bottom) Residual (fitted curve minus VL data).

E07006 GUO ET AL.: FIT MARS CO2 CYCLE WITH MARSWRF

13 of 19

E07006



the thermal properties between the two hemispheres. We will
discuss this issue in section 5.

5. Discussions of Parameterization

5.1. Albedo and Emissivity

[52] Although albedo and emissivity may be model-
dependent parameters, their physical interpretations are uni-
versal. By definition, albedo describes the fraction of solar
energy reflected back to space while emissivity measures the
fraction of energy in the blackbody curve for a surface of
given kinetic temperature that is released from that emitter. If
we first look at the retrievals without consideration of
subsurface water ice, the five parameter linear fit suggests
that the southern seasonal cap has lower albedo (0.461) and
higher emissivity (0.785) than the north (0.795 and 0.485,
respectively). For these experiments, MarsWRF was not run
in a mode to account for activities that change the effective
albedo and emissivity (such as clouds, dust storms, etc.).
Therefore, the best fit parameters not only characterize the
seasonal caps but also provide hints as to other physical
processes implicitly important to MarsWRF in the polar
regions.
5.1.1. Southern Seasonal Cap
[53] When surface CO2 ice is mixed with dust, its albedo

and emissivity change significantly. Assuming the same
grain size of ice, a dustier deposit can produce a much less
reflective and much more emissive surface material [Kieffer
et al., 2000]. Hence, we expect that we can attribute many of
the albedo and emissivity characteristics to the dust activity,
which is usually stronger in the southern hemisphere [Basu et
al., 2004; Martin, 1986; Smith, 2004]. However, it is less
clear that increases in dust result in a generally darker and
more emissive cap [James et al., 2000].

[54] Isotropic albedo (usually slightly higher than Lam-
bert albedo) was mapped by TES [Kieffer et al., 2000]. The
southern seasonal cap in general had albedos of 0.45 to 0.5,
with lower values (about 0.3) in the so-called ‘‘Cryptic
regions’’ and higher values (0.6 to 0.7) in the bright cap. On
average, TES observations agree very well with the albedo
predicted by the linear fit model for the south pole. Lambert
albedo was also mapped by IRTM aboard the Viking orbiters.
It ranged from 0.2 to 0.5 in the south [Paige and Keegan,
1994]. The region with an albedo 0.5 corresponded to the
residual cap rather than the seasonal cap. Since the southern
residual cap is believed to consist of mostly CO2 ice [Paige
and Ingersoll, 1985], the IRTM observations for the CO2 cap
are also consistent with our linear fit prediction. The Hubble
Space Telescope has reported higher southern seasonal cap
albedos for the bright cap region [James et al., 2005].
[55] We did not account for atmospheric CO2 cloud for-

mation and precipitation with microphysical calculations in
this version ofMarsWRF (when the atmospheric temperature
falls below the saturation point temperature for CO2 conden-
sation, the model instantaneously deposits the corresponding
condensed CO2 ice on the ground). It is believed that
atmospheric CO2 condensation may affect the atmospheric
state [Colaprete et al., 2008] and CO2 snowfall could con-
tribute to the low brightness temperature or equivalently the
low emissivity observed by various missions [Colaprete et
al., 2005; Forget et al., 1999]. Some models have made
efforts to relate the change in surface (seasonal cap) emis-
sivity to the amount of condensed CO2. Forget et al. [1998]
uses an empirical function to adjust the seasonal cap emis-
sivity based on the atmospheric CO2 condensation and
precipitation rate. Using equation (5) of that paper, we can
calculate an average adjustment to the seasonal cap emissiv-
ity due to CO2 snow. For the southern cap, this correction is

Figure 9. Same as Figure 7, except the driving parameters are as follows: northern seasonal cap albedo,
0.731; northern seasonal cap emissivity, 1.0; south albedo, 0.546; south emissivity, 1.0; total CO2 mass
index, 1.077; thermal inertia of the ice table is 3900 J m�3 K�1 in the northern hemisphere and 1800 J m�3

K�1 in the south.
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about 0.15. When subtracted from the reference value of
0.95, the effective emissivity is about 0.8, which is very close
to our best fit value. In other words, if CO2 snow is important,
our time-constant parameterization may be effectively cap-
turing this physical phenomenon while avoiding complexity
in computation.
5.1.2. Northern Seasonal Cap
[56] Measurements of the northern seasonal cap albedo

made by TES [Kieffer and Titus, 2001] are lower than our
best fit value, and so are the IRTM observations [Paige et
al., 1994; Paige and Keegan, 1994]. The polar hood cloud,
which is usually seen in the winter time [James et al., 1992,
1994; Wang and Ingersoll, 2002], could contribute to the
excessively high retrieved albedo of the northern cap. Fur-
thermore, polar hood clouds are seen much less often in the
southern hemisphere, and the retrieval results show that
little correction is needed for the albedo of the southern cap,
which starts relatively close to the observations. Although
the radiative effects of hood clouds are not modeled by
MarsWRF, the five-parameter set predicts the atmospheric
mass budget for Mars very well. If hood cloud effects are
significant, the retrieval scheme is effectively capturing
(and aliasing) these effects into the northern seasonal cap
retrieved albedo, by increasing the best fit albedo by 0.3 to
0.4 relative to the observations.
[57] When the effect of dust on the surface CO2 ice cap is

ignored, emissivity can be considered as a function of the
porosity of the CO2 frost: more porous ice tends to have lower
emissivity [Eluszkiewicz et al., 2005]. Our best fit emissivity
in the north is much lower than that in the south, suggesting a
much more porous CO2 ice slab in the north. Porosity data of
the two seasonal caps, which would provide a direct evalu-

ation of our argument, are not yet available. However, our
argument is at least consistent with the extremely low density
of the northern seasonal cap [Aharonson et al., 2004].
[58] Finally, it should be noted that a good fit to the VL

pressure data can still be obtained when the northern cap
emissivity is assumed to be unity as long as subsurface
water ice effects are included. Thus the degree to which
the low northern emissivities must be explained is itself
questionable.

5.2. CO2 Inventory

5.2.1. Annual Variation
[59] The global CO2 inventory cycle is plotted in Figure 10,

divided into different reservoirs. Our best fit cases suggest
that the total CO2 in the surface-atmosphere system is about
2.83� 1016 kg, which agrees towithin 5% of theNASAARC
GCM [Kelly et al., 2006]. 26% of the total CO2 (7.45 �
1015 kg) participates in the seasonal exchange between
the atmosphere and the caps, slightly larger than the ARC
GCM predictions, but consistent with earlier estimation
[James et al., 1992; Kelly et al., 2006].
[60] As discussed in the sensitivity study, the amount of

surface CO2 ice in MarsWRF is mainly determined by the
albedo and emissivity of the corresponding seasonal caps.
The prediction of surface CO2 in the southern hemisphere
by MarsWRF matches closely with the GRS observations.
In the north, our prediction is slightly higher than GRS
observations [Kelly et al., 2006]. Ideally, GCMs should be
able to simulate both surface CO2 deposition and VL site
pressure cycles that agree well with the available observa-
tions, thus yielding an estimate of the total ‘‘active’’ CO2

budget in the system. Slight disagreements in simultaneously

Figure 10. CO2 budget in MarsWRF using the best fit parameters (northern seasonal cap albedo, 0.795;
northern seasonal cap emissivity, 0.485; south albedo, 0.461; south emissivity, 0.785; total CO2 mass
index, 0.978). Red line, total CO2 in the system; blue line, mass of CO2 in the atmosphere; black line,
mass of CO2 on the surface; magenta line, surface CO2 in the southern hemisphere; green line, surface
CO2 in the northern hemisphere.
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fitting the seasonal cap masses and lander pressure curves
could result from interpolation errors given the relatively
poor model resolution (5� � 5.625�), missing sources and
sinks of CO2 (regolith), or instrument error.
5.2.2. Permanent Polar Caps
[61] A permanent CO2 cap exists at the Martian southern

pole [Kieffer et al., 1977]. No published GCM predicts the
existence of such a residual cap, and instead a residual cap
must be prescribed in the model boundary conditions (often
simply as a fixed surface temperature at the CO2 frost
point). We have found that permanent CO2 caps will appear
in MarsWRF only if extreme parameters (e.g., very high
albedo values) are used, which agree withWood and Paige
[1992].
[62] The best fit parameter sets, which lead to good rep-

lications of the VL pressure cycle, do not produce perma-
nent CO2 caps. This is not unexpected. Other GCMs do not
produce permanent caps while trying to fit the VL pressure
cycles [Haberle et al., 2008]. As stated in the introduction,
Wood and Paige [1992] used a simple one dimension model
for the thermal calculation to find the best parameter set to
fit the VL pressure cycle. They pointed out that with their
best fit values, the permanent cap is absent in both poles.
We verified their conclusion once again using a much more
sophisticated model (a GCM) that something ‘‘special’’ is
happening in the heat balance at the south residual cap to
somehow allow its existence. This is possibly due to an
insolation-dependent albedo [James et al., 1992; X. Guo et
al., On the mystery of the perennial carbon dioxide cap at
the south pole of Mars, submitted to Journal of Geophysical
Research, 2009].

5.3. Subsurface Water Ice

[63] As discussed in the sensitivity study, most of the
subsurface water ice layer’s footprint on the VL pressure
cycle can be represented by a linear combination of the
seasonal cap albedo and emissivity. Fitting using subsurface
water ice (via the effects on subsurface conductivity) does
not give particularly better fits. Rather, the advantage of
fitting using surface ice is in retrieving cap properties that
are more physically plausible. Subsurface water ice con-
tributes directly to the seasonal energy balance, which is the
driver of the CO2 annual cycle. Larger thermal conductivity
provides the missing heat source in the energy balance in
local winter, which before was represented by unrealistic
frost albedo and emissivity. Its potential was already dem-
onstrated in the GCM study by Haberle et al. [2008].
[64] The biggest difficulty in completing the picture is

that we do not know precisely how deep the water ice is
buried, what the water content is in the ice table, and how
things change over time. The current assumptions in
MarsWRF and ARC GCMs are more or less arbitrary. They
are not backed up bymany systematic observations, although
the Phoenix lander observations do support the kind of ice
table depth modeling undertaken by Mellon and Jakosky
[1993] and Schorghofer and Aharonson [2005]. On the other
hand, given very accurate measurements of the albedo and
emissivity of the seasonal caps, we would likely be able to
use the technique we have described to retrieve the (bulk)
properties of subsurface water ice.
[65] The fit with CO2 albedo, total CO2 mass, and water

ice table thermal inertia suggests much higher thermal

conductivity for the subsurface layer in the north, to at least
several meters below the surface. Since the spatial coverage
of the water ice table is very different in the two hemi-
spheres according to the GRS measurements (Figure 2), the
difference in the conductive properties per unit mass of the
regolith must be even larger. This is potentially a constraint
on the nature of the Martian near-surface regolith. The
crusts of the two hemispheres have long been known to
differ [Neumann et al., 2004;Watters et al., 2007], so it may
not be surprising to find they have different thermal
conductive properties (or different abilities to accommodate
highly conductive water ice).
[66] GRS reported hydrogen content and equivalent water

content distributions (Figure 2) near the Martian surface
[Feldman et al., 2004]. Assuming water ice occupies all the
pores in the soil, and knowing the densities of water ice
(900 kg m�3) and Martian crust (2900 kg m�3) [Zuber et
al., 2000], we can back out the porosity of the soil. We
make two more assumptions: first, the subsurface maintains
the same porosity through the vertical column considered
and that the pores are completely filled with water ice;
second, the dry soil thermal conductivity in the subsurface
is the same as the surface, whose equivalent thermal inertia
is provided by TES [Putzig et al., 2005]. We can then cal-
culate the thermal inertia of the subsurface mixture of soil
and water ice (shown in Figure 11). An obvious north-south
dichotomy in thermal inertia map can be seen. Zonal
average subsurface thermal inertia ranges from 300 to
1400 J m�3 K�1 in the north, with a maximum of 1730 J m�3

K�1. In the south, the zonal average varies between 220 and
540 J m�3 K�1; this is on average about two to three times
smaller than in the north. This dichotomy is due to the
combined effects of high water ice content and high soil
thermal inertia in the northern polar region. We notice that
the values of thermal inertia obtained from this calculation
are smaller than suggested by the retrieval scheme. There
are ways to reduce this gap since the best fitted thermal
inertia values could be misleading: MarsWRF assumes
constant density and thermal capacity for the subsurface
material. A decrease in dry soil density and/or heat capacity
will decrease the thermal inertia while keeping the same
thermal conductivity. One may also argue that the GRSmay
underpredict the water ice content and therefore the soil
porosity. Setting those possibilities aside, there is an impor-
tant common message from these two independent studies;
that is, there exists a significant north-south dichotomy in the
subsurface thermal conductivity in the polar regions.
[67] When we fix the seasonal cap emissivity to unity, we

still need to adjust the seasonal cap albedos in order to make
the seasonal pressure cycle phase match observations. This
suggests that the inclusion of the water ice table, while
improving physicality, is not the panacea - we do not yet
have a complete and satisfactory understanding of the
processes controlling the CO2 cycle. In order to build a
better Mars GCM, we need to build more physically based
prognostic models for the frost albedo and emissivity,
capturing processes now implicitly aliased into our retrieved
cap properties.

5.4. Limitations of the Linear Fitting Method

[68] As we discussed in section 3, the linear fitting
algorithm assumes the response in surface pressure scales
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linearly with the perturbation of the fitting parameters. In
MarsWRF, this assumption becomes less valid when the
perturbation is large, especially for perturbations to the water
ice table thermal inertia. For example, in Figure 3 (bottom),
when we perturb the thermal inertia baseline by 1000, 2000,
and 3000 J m�3 K�1, the responses of the latter two are not
simple multiples of the first. The perturbation matrix may
change greatly when the baseline parameter vector moves to
a different state. It may influence the calculation of the cost
function and the iterativemethod: the last case from section 4.2
provides a good demonstration of these effects. If this is the
case, we need to recalculate the pressure perturbation vectors
to maintain linearity.
[69] The pattern of the perturbation matrix changes dras-

tically in extreme situations. More specifically, MarsWRF
does not respond to further change of parameters after critical
values are reached. For instance, in Figure 3 (bottom), raising
the water ice table thermal inertia by 3000 J m�3 K�1 does
not increase the surface pressure much more than raising it by
2000 Jm�3 K�1. In another situation where the frost albedo is
too high, a permanent cap will form in the corresponding
pole. One can easily imagine that the pressure response
would have a very different pattern.
[70] Another related limitation of the iterative algorithm

is that it is sensitive to the choice of the starting parameter
vector. Starting the fitting with Y1 = F(A1) may produce a
different best fit parameter vector than starting with Y2 =
F(A2), but both may yield comparable RMS errors. When
used in MarsWRF, however, they may correspond to very
different VL pressure cycles and RMS errors. Some are closer
to the observations than the others. We have to choose the
desired sets on the basis of their performances in the GCM
and their physical soundness.

[71] Ideally, we should force the perturbations to be very
small and recalculate the perturbation matrix for each
iterative step. However, this wouldmake the fitting extremely
slow owing to the greater number of required iterations and,
more importantly, more GCM runs to calculate the perturba-
tion matrices. Fortunately, we can assume the perturbation
matrix does not change for most of our retrievals. We also
carefully selected the starting point of the iteration to make
the process stable.

6. Conclusion

[72] We provide a method to obtain close fits to the VL
surface pressure data using a chosen subset of ‘‘tunable’’
parameters within Mars General Circulation Models. We
construct a set of basis vectors by perturbing five parame-
ters in the GCM, including albedo and emissivity for the
seasonal CO2 caps in both poles and the total amount of
CO2 in the system. In this sense, our method is related to
ensemble data assimilation. We utilize an iterative method
to find the best linear combination of the basis vectors that
minimizes the least squares error between the fit and the VL
data. The coefficients for the linear fit are then projected
back to parameter space and a best fit parameter set is
obtained. When used in MarsWRF, this parameter set yields
a pressure cycle very close to the VL observations as
predicted by the linear method.
[73] The method described in this paper provides a first

rigorous and quantitative means for fitting the seasonal
pressure cycle with a GCM. As designed, we expect that
this method would be useful for calibrating the CO2 cycle in
any model and thus could provide a benchmark method for
tuning GCMs. The study confirms the idea that a simple

Figure 11. (left) Hypothesized subsurface thermal inertia in J m�3 K�1 map and (right) zonal average.
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parameterization has the potential to capture most of the
underlying physics of the CO2 cycle [Wood and Paige,
1992]. In the linear fit, the best fit parameters qualitatively
show footprints of the physical processes that are not
explicitly represented in MarsWRF but effectively captured
by the parameterization, such as the presence of cloud,
precipitation of atmospheric CO2 ice, surface frost with
different porosity, etc.
[74] While the mathematics of the approach is elegant, the

retrieved parameters are not guaranteed to be in agreement
with direct observations. For instance, the cause of the big
difference in the retrieved radiative properties of the two
seasonal caps is not thoroughly understood. Attributing the
differences to specific unmodeled physical process will
require further work, along the philosophical lines laid out
in the Introduction. However, our method provides a road
map for the procedure of unveiling all relevant physics. We
start with the simplest parameter set that fits the data well.
Wherever the retrieved parameters differ from observed or
physically sound values, we must look for further unre-
solved (unmodeled) physical processes. For example,
parameterizations of clouds, dirty frost, etc., are likely still
required. The soil thermal property change due to the
presence of subsurface water ice is one such piece of
physics we added in this study. Both MarsWRF and the
NASA ARC Mars GCM have verified that including the
subsurface ice improves the physical soundness of retrieved
cap properties.
[75] Our simulations suggest that the northern subsurface

layer has higher thermal conductivity than the south. This
argument is also supported by GRS and TES observations.
This bias in the inferred thermal conductivity may be related
to differences in the water cycle, in the ability of the regolith
materials in the two hemispheres to accommodate water,
and/or in the regolith conductivity itself. Finally, none of the
retrievals reproducing reasonable pressure curves are able to
simultaneously yield a residual CO2 ice cap at the south.
This may suggest that assumptions such as the temporally
constant values of the retrieved cap properties may not be
completely valid.
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